
A Proposed Methodology for Performing
Compliance Validation Configuration Auditing

Prepared by:

Dr. Bruce Gabrielson
SAIC Center for Information Security

Technology
7125 Columbia Gateway Dr, Suite 300

Columbia, Maryland 21046

In association with:
Ms. Penny Klein

Defense Information Systems Agency, D25
5111 Leesburg Pike, Suite 400
Falls Church, VA 22041-3206

Summary

This paper addresses the results of a study
examining potential techniques or methods
that could be used to perform configuration
audits in support of the DITSCAP [1] Phase
4, Post Accreditation process. Using system
changes (considered trigger events) that
might result in a potential vulnerability, the
study focused on how to obtain information
about the change rather than the
vulnerability itself. The purpose of
compliance validation (CV) activities are to
ensure the continued compliance with the
security requirements, current threat
assessment, and concept of operations as
stated and agreed upon in the SSAA [2].
The proposed approach presents a
“snapshot-based” method to perform CV
configuration auditing. Specifically, a
technique is proposed that will quickly
provide real time change information
sufficient to indicate the need for further
security related testing.

Introduction

The introduction of the DITSCAP has
proven to be a useful approach to satisfy
accreditation requirements for Government
Information Technology Systems (ITSs). It
is tailored to provide a complete solution in
a climate with constantly changing multiple
complex systems. DITSCAP Phase 4, Post
Accreditation, includes those activities
(shown in Figure 1) necessary for the
continuing operation of the accredited IS in
its specified computing environment. This
phase starts after the system has been

certified and accredited for operations. The
objectives of Phase 4 are to ensure secure
system management, operation, and
maintenance to preserve an acceptable level
of residual risk. The methodology for
performing this function is called
Compliance Validation.

The objective of the Compliance Validation
and Inspection (CVI) process is (1) to assess
the degree to which Defense Information
System Agency’s (DISA) information
systems (ISs) comply with Department of
Defense (DoD), Office Of Management and
Budget (OMB), and National Security
Requirements and (2) to recommend a level
of validation testing that will maintain
information system accreditation in
accordance with DoD security guidance.
The challenge for DoD is to implement a
CVI program that can keep the security
posture current, be responsive to changing
missions, environments, and architectures,
be supportable by scarce resources, and can
maintain the information system’s
accreditation.

After an IS is approved for operation in a
specific computing environment, changes to
the information system and the computing
environment must be continuously
monitored and controlled. Although
changes can adversely affect the overall
security posture of the infrastructure and the
information system, change is also a
necessary response to evolving misuse,
users' needs, and new technology
developments.

 1

Accreditation using the DITSCAP process is
currently based upon a formal security
validation. This is performed through
testing and an evaluation that ties each
system's certified hardware and software to
the configuration of the computing
environment as well as the relationship of
other technologies versus the common
infrastructure at the time of the
accreditation. Subsequent changes in the
information system configuration,
operational mission, computing environment
or the computing environment's
configuration may invalidate the security
posture identified during the initial
accreditation. The ability and timeliness of
the accrediting organization to determine
when a change has been made is critical to
continued success of the overall secure
posture.

Background on Events That Indicate
Revalidation

The DITSCAP recognizes the evolving
nature of information systems and
technologies and through change
management attempts to address this
evolution during Phase 4. Systems requiring

revalidation within the DITSCAP process
are initially identified to the accrediting
organization based on a defined condition.
This condition can be the result of a request
notification, the system has exceeded a
periodic schedule for revalidation, or the
system has exhibited characteristics that
could indicate a security problem.
Periodically scheduled systems are default
candidates for accreditation, while behavior
related re-validations are based on what is
defined as triggering events.

Any characteristics that could indicate a
security problem might exist are called
triggering events. A known modification to
any portion of the system mission,
environment, or architecture that affects the
system’s overall security posture would be a
triggering event. CV triggering events
signal a potential change in the accreditation

posture of the system has taken place. The
trigger events identified include:

• Change requests/notifications – new
system or connected systems

• Configuration Audit Indicating a
Changed Configuration

• Personnel Changes

 2

Identified Change

1. Operating System
2. Primary Application

3. Adding Another Major Appli
4. Policy/Mission Needs Cha

5. Adding Another Service
6. Environment Change

7. Logical/Physical Chang
8. Equipment Upgrade

9. Security Application Chan

Table 1 – Con

• Threat Documentation
• New Security Advisory
• Trouble/Vulnerability Test Reports

Note that while some of the above trigger
events obviously indicate a potential
security problem requiring immediate
security organization action, some simply
indicate that a change has occurred. These
changes are changes that are seldom acted
upon or evaluated immediately and do not
always result in a scheduled CV test.

Changes That Might Indicate a
Vulnerability

Testing experience provides a good feel for
the types and severity of changes that may
cause a vulnerability problem. These
changes are shown in Table 1 [3]. Those
listed as “minor” are indicated as such only
because they are less often the source of a
vulnerability problem, not because the
vulnerability is less severe in nature. Of
concern is that not every identified type of
change can be readily detected during
testing using available remote vulnerability
test tools or other documentation that might
be provided.

 3

Major

Minor

X

X
cation X
nge X
 X

 X
e X

 X
ge X

figuration Changes
Detecting Change and Resource
Allocation

When considering the ability to detect a
change, many indicators are taken into
consideration. However, two sources of
detection concern are noted. First, there
might be some vulnerability that would be
easy to detect using host based only
approaches. Second, it is possible that a
significant vulnerability related change
might remain undetected until a revalidation
simply because it isn’t looked for remotely
during normal vulnerability testing. Current
remote vulnerability test tools look for
problems, not internal changes.

Organizations that support the accreditation
process also have the problem of applying
their critical test resources in a timely
manner where they are most needed. It is
expensive to continually send test personnel
to user’s sites to test for vulnerabilities that
may or may not exist. The DITSCAP
currently details a robust change
management process on a three-year re-
accreditation cycle. Continuing technology
improvements can cause rapid changes in
the installed computing base as depicted in
Figure 2. The top broken line indicates
changes taking place at shorter than three-
year intervals. The middle CV line indicates
a regular cycle of configuration audit testing
that would closely monitor and detect when

T IME

Cha ng e

Initial
A cc red itation

3 y ears 3 y ears

Cha ng e Cha ng e Cha ng e

C V C onfig . A ud its

Regu lar C V Test C yc le

F ig ure 2 – T im eline o f C o nfig ura tio n
C ha ng e vs. C o m p lia nce Va lid a tion
E va lua tions

changes take place. The bottom line
represents the current CV three-year test
cycle that might (and probably is) be too
long in many instances.

An automated tool-based test cycle is likely
the most reasonable and cost effective way
to handle a changing environment when
many systems are involved. The
configuration audit along with random
vulnerability testing is considered cost
effective method that can reduce the
potential for vulnerabilities as a result of
technology improvements. However, the
pressing need is to determine in real time if
a potential problematic change has occurred
that will trigger the need for further
investigation. This can be accomplished
with the proposed “snapshot” type test
approach.

In all cases, the primary consideration for
accreditation personnel is to limit the need
for testing at a particular user’s site. If it
were possible to get the needed information
immediately from a remote activity, then
that would be the most valuable information
for the accreditation team. Failing this, the
ability to proactively look for changes using
a cost-effective remote approach is a
practical solution.

Approach to the Study

The study had several facets including:
discover which available remote or local test
could identify a system change, evaluate the
possibility of a potential vulnerability being
detected only by someone at the host, and
determine how this potential vulnerability
might be detected using a remote means.
Additionally, there was the need to
determine which test would be most suited
to reduce the time that a new change would
go undetected after an initial accreditation,
and also which tool would allow the most
effective use of limited resources. Again it
is important to point out that changes are
considered trigger events, and that a change
does not necessarily mean the presence of a
new vulnerability.

Initial research identified two significant
detection problems. First, the lack of a
remote test that would detect the presence of
a major new application, in particular the
presence of a previously unidentified web
site. Secondly, the need for a tool that
would provide change information on NT
systems. For example, the fact that a former
UNIX server has been replaced by a NT
server is a significant change.

 4

To address the web issue, either a test tool
that could identify web vulnerabilities is
necessary, or a tool that would detect the
presence of a web site could be used.
Identifying a new web site would allow
either the local security representative or the
accreditation team a chance to evaluate
potential web-based vulnerabilities directly
at the host that may not have been evaluated
for this threat previously.

Three mitigation techniques will potentially
solve the new web site identification
problem. Acquiring a remote test tool that
can be operated in a web test mode would at
least scan for web vulnerabilities remotely.
However, based on our limited knowledge,
such a tool normally would not find new
web sites that do not have any
vulnerabilities. The second approach is
similar. Write or find a small program to
scan an IP range for open ports 8080 or 80.
This approach has the flaw in that it won’t
find sites that have been hidden by using
another port. The third approach is to
develop a search engine that will scan for all
html sites that are within a range of
addresses.

For the NT issue, if we are simply looking
for an operating system change, there are
certain indicators that can be used similarly
to the web site indicators. Port 139 (Net
Bios Session Service) is not active on UNIX
based systems. Additionally, port 135
(Location Service) might also indicate a NT
system. Therefore, the same program that
scanned an IP range for a web server should
also be able to scan for an operating system
indicator. If this does not work, a remote ftp
attempt would allow the tester to determine
the operating system type. Another
approach would use the available remote
vulnerability test tool.

Suggested Methodology

Once an approach to identify indicators was
determined, a search for a port scan freeware
tool was undertaken. The intent was to find
a tool that could be applied to satisfy only

the needed requirements. While port
scanning is an integral component of various
vulnerability test tools, only the scanner
component itself is required for the proposed
test approach. At least one tool with
potential to meet CV audit requirements was
identified.

Strobe [4]

Strobe stands for Super Optimized TCP Port
Surveyor. Strobe is freeware that can be
used by subnet site system administrators or
by the networking system administrator to
verify services on hosts connected to the
network. It can also be used as a
network/security tool that locates and
describes all listening TCP ports on a
(remote) host or on many hosts in a
bandwidth utilization maximizing and
process resource minimizing manner.
Strobe approximates a parallel finite state
machine internally. In non-linear multi-host
mode it attempts to appropriate bandwidth
and sockets among the hosts very
efficiently. This can result in appreciable
gains in speed for multiple distinct
hosts/routes.

On a machine with a reasonable number
of sockets, Strobe is fast enough to
easily perform port scanning of entire
sub-domains. Strobe can also survey of
very large and complex networks
quickly from a fast machine located on
the network backbone, provided the
machine in question uses dynamic
socket allocation or has had its static
socket allocation increased very
appreciably.

Strobe (1.03) Synopsis and Options

 strobe [-vVmdbepPAtnSilfsaM] [host1
... [hostn]]

The following options are available for use
with Strobe V 1.03:

 -v Verbose output.

 5

 -V Verbose statistical output.

 -m Minimize output.

Only print hostname, port tuples.
Implies -d. Useful for automated output
parsing.

 -d Delete duplicate entries for port
descriptions. i.e use only the first definition.

 -s Statistical information describing
the average of all hosts surveyed is sent to
stderr on completion.

 -q Quiet mode. Don't print non-fatal
errors or the (c) message.

 -d Display only the first description
in the port services entry file (Cf. -B).

 -o file
 Direct output (but not any
messages which can be affected by -q) to
file.

 -b number
 Beginning (starting) port number.

 -e number
 Ending port number.

 -p number
 Port number if you intend to scan a
single port.

 -P number

Local port to bind outgoing
connection requests to. (you will normally
need super-user privileges to bind ports
smaller than 1024)

 -A address

Interface address to send outgoing
connection requests from for multi-homed
machines.

 -t number

Time after which a connection
attempt to a completely unresponsive
host/port is aborted.

 -n number

Use this number of sockets in
parallel (defaults to 64).

Strobe attempts to figure out if the number is
greater than the quantity of available sockets
at any point in time -- and if so, Strobe only
uses the amount found. On some UNIX
implementations such as Solaris, this
appears not to work correctly and the user
may have unusual errors such as NO
ROUTE TO HOST when the socket ceiling
is reached. Strobe may not be the only
process running on the system desiring a
socket and resource contention may occur.
Having Strobe pilfer all the spare sockets
away from inetd and other daemons and
clients isn't a good idea as it could stop all
new incoming and outgoing connections.

 -S file

Change the default port services
description file to file. Note that if the -S
option is not specified, port services are
loaded from one of the Strobe specified
services,
 /usr/local/lib/strobe.services, or
/etc/services.

 -i file

Obtain hostnames to Strobe from
file rather than from the command line.
Note that only the first white-space
separated word in each line of file is used, so
one can feed in files such as /etc/hosts.

 If filename is '-' , stdin will be used.

 -l Probe hosts linearly (sequentially)
rather than in parallel. The actual ports on
each host are still checked in a parallel
manner (with a parallelism of -n (defaults to
64)).

 -f Fast mode, probe only the TCP
ports detailed in the port services file (see -
S).

 6

 -a number

Abort and skip to the next host after
ports to the indicated number have been
probed and still no connections have
occurred. Due to the parallel nature of the
probing, reply packets for n+m may return
before those relating to n. What this means
is that ports > a certain number (n) may be
probed. If Strobe identifies a connection on
any one of these higher ports before it has
negated all possibility of a service listening
on ports <= number (n), then despite the fact
that all ports up to and including n may turn
out to be connectionless, Strobe will `abort
the abort'. This is considered optimal, but
not unusual behavior.

 -M Mail a bug report, or TCP/UDP port
description to the current source maintainer.

Strobe Examples

• strobe -n 120 -a 80 -i /etc/hosts -s -f -V -

S services -o out

Strobe all entries in /etc/hosts (identical ip
addresses are skipped automatically) using
120 sockets in parallel, but only check the
individual TCP ports mentioned in services.
If the user has probed up to port 80 on a host
and still not identified a connection, then
skip that host. Display speed/time statistics
for each host and for the totality of hosts to
stderr. Place the regular output in out.

• ypcat hosts | strobe -p 80 -t 2 -A

203.4.184.1 -P 53

Strobe all hosts in the host’s YP/NIS-table
for WWW- servers. Use a timeout of two
seconds. Set the source address to the
203.4.184.1 interface. Make all connection

requests appear to come from port 53
(DNS).

Strobe performs no other security functions
and does not verify route blocking against
UDP or TCP Handshake sequence guessing
one-way IP spoofing attacks.

A Proposed Configuration Audit Test

Various proactive vulnerability test tools use
a port scanner to initially identify which
ports to attack. While Strobe test results
effectively perform this function, the
proposed configuration audit test requires a
baseline. Therefore, the real test for changes
is not the Strobe output itself, but the
comparison of sequential Strobe test results.
These results provide both the initial
baseline snapshot, and the ongoing history
of configuration change snapshots for all
systems tested. Writing a script that will
append the Strobe to a file on a monthly
basis allows the system administrator to
keep track of all services currently running.
Each month before overwriting the old
output with the new output, a comparison
can be made to check for the size of
previous month’s file, to the current file. If a
difference occurs, the file is not overwritten,
and an email message alerting the
administrator or tester can be sent.

The tester would then compare the two
outputs, either manually, or preferably
through the script enhancement, to
determine if new services have been
enabled, or if existing services have been
modified or augmented. Although formal
testing of the approach has not been
performed, it is expected that most of the
following Table 2 change indicators would
be identified using this technique. Examples
of expected results are shown in Table 3.

 7

A
be
sin

a file that did not exist. The baseline
snapshot only technique keeps the
network’s database of current
configurations simplified.

Testing/Administrative Approaches

External security testing should be
performed on a recurring basis. Sites
with significant growth need to be
regularly tested for potential
configuration problems. Testing
serves several purposes:

• External testing with a
notification process.

• Identify systems and services
running at networked sites.

• Probe random testing without
notification to determine if
sites monitor their logs.

• New Web server
identification testing.

• Identify penetrated systems

Change Identifiers1

1. Operating System Change
 --OS Upgrade shows up as a new open
 ports
 --Could also automate SMPT server
 lookup for version change
2. Primary Application
 --shows up as a new open port
3. Adding Another Major Application
 --shows up as a new open port
4. Adding Another Service
 --shows up as a new open port
5. Logical/Physical Change1

 --would only detect a new set or ports
6. Equipment Upgrade
 --mostly undetectable1

7. Security Application Change
 --likely shows up as a new open port

Table 2 – Change Identifiers
changed or added IP on a network would
immediately identified during testing

ce there would be an attempt to overwrite

that have been re-configured
 by an attacker.

Change Identifier Port Example

Operating System Change • NT will have ports 139 or 135 for OS Upgrade
• UNIX’s root privileged ports are 0 – 1023

Primary Application DNS service = dns port 53/udp
NetBios Name Server = netbios-ns port 137/tcp

Adding Another Major Application Oracle = oracle port 2005/udp

Creating Web Server Open port 80 or 8080

Adding Another Service Time Server = timed port 525/tcp

Security Application Change AFS/Kerberos Authentication Service = afs3-
kaserver port 7004/tcp

Table 3 – Change Identifier Port Examples
8

External Testing Cycle

A diligent, attentive security person (or
staff) should be used to perform regular
external testing. Expected growth in
network assets and classified information
access should drive the need for an
automated preventive configuration control
mechanism to be implemented. Once
implemented, there are a number of steps the
security person needs to take in order to
perform Strobe configuration audit testing.

• A tester needs access to the DNS
server and a complete POC (point-
of-contact) list that contains: TCP/IP
address, machine type (Sun, NT,
etc), hostname, POC name, email
address, and phone number for each
registered system.

• From the DNS information, create a
master file of all TCP/IP addresses.

Example: 199.199.142.1
hostname.sys.mil
trigger.sys.mil

 dolphin.sys.mil

• Strip out hostnames in master file.
Create blocks (smaller files) based
on total number in master file.
Example: master file equals 10,000
hosts. To test all systems in a (3)
month period, approximately (167)
systems would have to be tested
daily or (84) systems daily over a
six-month period based on an
average of (20) workdays a month.

Probe Configuration Audit Testing

The purpose of probe (configuration
information gathering) testing without
notification is to:

• Check for configuration changes
that have not been reported.

• Determine services running (telnet,
ftp, http, routed, etc.) on boxes at
random sites.

• Determine what sites are reading
their system logs, and reporting
unscheduled probes?

• Obtain an estimate [5] for the
number of web servers running at
sites.

Identifying Services

After accreditation and testing, a system is
allowed access on a network. Using Strobe,
a security tester can take a configuration
snapshot to identify TCP ports that are open
for services. Over time new applications
(web servers, anon ftp etc.) may be added to
a server on the network. Strobe helps the
tester identify where changes in services
have taken place. Running Strobe on a
regular basis also helps individual sites
(system administrators) track these changes.
Strobe does not gain access to a system but
its results could be used as part of the
process to identify where potential
vulnerabilities might be located. Being
aware of what (TCP ports) services are open
to outside sites is important information for
configuration auditing as well as for
identifying port vulnerabilities.

Random Unscheduled Probes

If unauthorized personal are probing
protected networks, system administrators
should be reading their system logs and
reporting the findings immediately.
Random, unscheduled (no prior notification)
probes will determine who and what
percentage of site administrators are reading
system logs and reporting these probes. If
administrators don’t read logs (system and
web logs), there is the potential that system
resources can be compromised for extended
periods of time. The potential even exists
that information could be distributed (by
accident) to those who have the proper
clearance but “not a need to know”.

 9

Sample Test

Recording the number of web servers
running on a network helps system
administrators to identify potential
vulnerability locations. Classified
information will continue to be distributed
(possibly significant growth) in html format.
For simplicity, web servers have become a
preferred method to post (exchange)
information. Maintaining a uniform
configuration of web server access is
difficult.

Unscheduled Probe Testing Cycle

This section describes a proposed
configuration audit test approach by actively
checking how diligently system
administrators are at checking their logs for
probes.

a. An experienced security person (ST&E
person) should be assigned for random
probe testing.

b. The ST&E person needs access to the
DNS server.

c. Using DNS, create a master file. Strip out
hostnames. Then create smaller files based
on the total number in master. Example: if
master equals 1000 subnets (199.199.24.) or
1000 networks (sites), choose one out of
every ten.

d. Strobe is a very fast scan tool that runs on
many different platforms. Strobe is run from
the command line (No GUI).

e. Results should be kept in a database.
These results should determine, who, how
many, which sites report or otherwise noted
the probes. Phone calls and email should be
placed to site’s POC (system administrator)
after a set time (one or two weeks) to
discuss:

• Did they notice the probes?
(Y/N)

• Did the site report the probes?
(Y/N)

Inform POC/system
administrator how to report probes
and to whom?
• Do sites keep system logs for

more than a month? (Y/N)
• Do sites check and/or run

logging on web servers? (Y/N)

Further Notes on a Random Test Cycle

After probing 10% of the networks, the
tester should go back to one specific server
(on each network) running multiple services.
These services include: telnet, http, routed,
ftp etc. The tester should attempt access
with general hacker approaches, telnet
<system name, root, guest > anonymous ftp,
cgi-bin attacks on port 80, etc. Contact the
POC (admin) 5-7 days later (phone or email)
to find out if the probing attempts were
logged, reported, or even noticed. If the
attempt remained unnoticed, this would be
an indication that further more specific
vulnerability testing is warranted.

Conclusions

There is a pressing need by organizations to
quickly perform remote real-time security
configuration audits is such a way that
security related change information is
identified. The proposed methodology using
a variation of a readily available test tool,
Strobe, will solve this need in a cost-
effective and easy to use manner.
Additionally, the results of longer term
regular testing will provide the database
necessary to validate time periods currently
specified for the compliance validation of
systems under Phase 4 of the DITSCAP.

References

[1] Department of Defense (DoD)
Information Technology Security
Certification and Accreditation Process
(DITSCAP), DoD Instruction 5200.40,
December 30, 1997.

 10

[2] System Security Authorization
Agreement (SSAA) – Accreditation
document required within the DITSCAP
process (see enclosure 6 of DITSCAP).

[3] DRAFT Compliance Validation
Implementation Plan, SAIC for DISA D25,
October 10, 1998.

[4]
ftp://coast.cs.purdue.edu/pub/tools/unix/stro
be/
or from
ftp://suburbia.net:/pub/strobe.tgz

[5] Due to the possibility that a hidden Web
service was installed but not necessarily
used on the initially accredited system,
Strobe would still detect an open port but
not that it was used for Web services.

 11

